3.529 \(\int \frac{x^5 \left (c+d x+e x^2+f x^3\right )}{\left (a+b x^4\right )^{3/2}} \, dx\)

Optimal. Leaf size=343 \[ \frac{c \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{2 b^{3/2}}+\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (9 \sqrt{b} d-5 \sqrt{a} f\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{12 b^{9/4} \sqrt{a+b x^4}}+\frac{3 d x \sqrt{a+b x^4}}{2 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{3 \sqrt [4]{a} d \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 b^{7/4} \sqrt{a+b x^4}}+\frac{x \left (a f-b c x-b d x^2-b e x^3\right )}{2 b^2 \sqrt{a+b x^4}}+\frac{e \sqrt{a+b x^4}}{b^2}+\frac{f x \sqrt{a+b x^4}}{3 b^2} \]

[Out]

(x*(a*f - b*c*x - b*d*x^2 - b*e*x^3))/(2*b^2*Sqrt[a + b*x^4]) + (e*Sqrt[a + b*x^
4])/b^2 + (f*x*Sqrt[a + b*x^4])/(3*b^2) + (3*d*x*Sqrt[a + b*x^4])/(2*b^(3/2)*(Sq
rt[a] + Sqrt[b]*x^2)) + (c*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(2*b^(3/2)) -
 (3*a^(1/4)*d*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2
]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*b^(7/4)*Sqrt[a + b*x^4]) + (
a^(1/4)*(9*Sqrt[b]*d - 5*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sq
rt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(12*b^(9/
4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.713984, antiderivative size = 343, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 10, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333 \[ \frac{c \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{2 b^{3/2}}+\frac{\sqrt [4]{a} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (9 \sqrt{b} d-5 \sqrt{a} f\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{12 b^{9/4} \sqrt{a+b x^4}}+\frac{3 d x \sqrt{a+b x^4}}{2 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{3 \sqrt [4]{a} d \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 b^{7/4} \sqrt{a+b x^4}}+\frac{x \left (a f-b c x-b d x^2-b e x^3\right )}{2 b^2 \sqrt{a+b x^4}}+\frac{e \sqrt{a+b x^4}}{b^2}+\frac{f x \sqrt{a+b x^4}}{3 b^2} \]

Antiderivative was successfully verified.

[In]  Int[(x^5*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]

[Out]

(x*(a*f - b*c*x - b*d*x^2 - b*e*x^3))/(2*b^2*Sqrt[a + b*x^4]) + (e*Sqrt[a + b*x^
4])/b^2 + (f*x*Sqrt[a + b*x^4])/(3*b^2) + (3*d*x*Sqrt[a + b*x^4])/(2*b^(3/2)*(Sq
rt[a] + Sqrt[b]*x^2)) + (c*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(2*b^(3/2)) -
 (3*a^(1/4)*d*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2
]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*b^(7/4)*Sqrt[a + b*x^4]) + (
a^(1/4)*(9*Sqrt[b]*d - 5*Sqrt[a]*f)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sq
rt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(12*b^(9/
4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 140.344, size = 316, normalized size = 0.92 \[ - \frac{3 \sqrt [4]{a} d \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) E\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{2 b^{\frac{7}{4}} \sqrt{a + b x^{4}}} - \frac{\sqrt [4]{a} \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) \left (5 \sqrt{a} f - 9 \sqrt{b} d\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{12 b^{\frac{9}{4}} \sqrt{a + b x^{4}}} + \frac{e \sqrt{a + b x^{4}}}{b^{2}} + \frac{f x \sqrt{a + b x^{4}}}{3 b^{2}} + \frac{x \left (a f - b c x - b d x^{2} - b e x^{3}\right )}{2 b^{2} \sqrt{a + b x^{4}}} + \frac{c \operatorname{atanh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a + b x^{4}}} \right )}}{2 b^{\frac{3}{2}}} + \frac{3 d x \sqrt{a + b x^{4}}}{2 b^{\frac{3}{2}} \left (\sqrt{a} + \sqrt{b} x^{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**5*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)

[Out]

-3*a**(1/4)*d*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*
x**2)*elliptic_e(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(2*b**(7/4)*sqrt(a + b*x**4))
 - a**(1/4)*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x*
*2)*(5*sqrt(a)*f - 9*sqrt(b)*d)*elliptic_f(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(12
*b**(9/4)*sqrt(a + b*x**4)) + e*sqrt(a + b*x**4)/b**2 + f*x*sqrt(a + b*x**4)/(3*
b**2) + x*(a*f - b*c*x - b*d*x**2 - b*e*x**3)/(2*b**2*sqrt(a + b*x**4)) + c*atan
h(sqrt(b)*x**2/sqrt(a + b*x**4))/(2*b**(3/2)) + 3*d*x*sqrt(a + b*x**4)/(2*b**(3/
2)*(sqrt(a) + sqrt(b)*x**2))

_______________________________________________________________________________________

Mathematica [C]  time = 0.648994, size = 255, normalized size = 0.74 \[ \frac{\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \left (3 \sqrt{b} c \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )+a (6 e+5 f x)+b x^2 \left (-3 c-3 d x+3 e x^2+2 f x^3\right )\right )+i \sqrt{a} \sqrt{\frac{b x^4}{a}+1} \left (5 \sqrt{a} f+9 i \sqrt{b} d\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+9 \sqrt{a} \sqrt{b} d \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{6 b^2 \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^5*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4)^(3/2),x]

[Out]

(Sqrt[(I*Sqrt[b])/Sqrt[a]]*(a*(6*e + 5*f*x) + b*x^2*(-3*c - 3*d*x + 3*e*x^2 + 2*
f*x^3) + 3*Sqrt[b]*c*Sqrt[a + b*x^4]*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]]) + 9
*Sqrt[a]*Sqrt[b]*d*Sqrt[1 + (b*x^4)/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt
[a]]*x], -1] + I*Sqrt[a]*((9*I)*Sqrt[b]*d + 5*Sqrt[a]*f)*Sqrt[1 + (b*x^4)/a]*Ell
ipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(6*Sqrt[(I*Sqrt[b])/Sqrt[a]]
*b^2*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.011, size = 358, normalized size = 1. \[ -{\frac{d{x}^{3}}{2\,b}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{{\frac{3\,i}{2}}d\sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{{\frac{3\,i}{2}}d\sqrt{a}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{c{x}^{2}}{2\,b}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{c}{2}\ln \left ( \sqrt{b}{x}^{2}+\sqrt{b{x}^{4}+a} \right ){b}^{-{\frac{3}{2}}}}+{\frac{e \left ( b{x}^{4}+2\,a \right ) }{2\,{b}^{2}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{afx}{2\,{b}^{2}}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{b}} \right ) b}}}}+{\frac{fx}{3\,{b}^{2}}\sqrt{b{x}^{4}+a}}-{\frac{5\,af}{6\,{b}^{2}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^5*(f*x^3+e*x^2+d*x+c)/(b*x^4+a)^(3/2),x)

[Out]

-1/2*d/b*x^3/((x^4+a/b)*b)^(1/2)+3/2*I*d/b^(3/2)*a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/
2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/
2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-3/2*I*d/b^(3/2)*a^(1/2)/(I/a^(1/2)*b
^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b
*x^4+a)^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-1/2*c*x^2/b/(b*x^4+a)^(1/
2)+1/2*c/b^(3/2)*ln(b^(1/2)*x^2+(b*x^4+a)^(1/2))+1/2*e*(b*x^4+2*a)/(b*x^4+a)^(1/
2)/b^2+1/2*f/b^2*a*x/((x^4+a/b)*b)^(1/2)+1/3*f*x*(b*x^4+a)^(1/2)/b^2-5/6*f*a/b^2
/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*
x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)*x^5/(b*x^4 + a)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{f x^{8} + e x^{7} + d x^{6} + c x^{5}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)*x^5/(b*x^4 + a)^(3/2),x, algorithm="fricas")

[Out]

integral((f*x^8 + e*x^7 + d*x^6 + c*x^5)/(b*x^4 + a)^(3/2), x)

_______________________________________________________________________________________

Sympy [A]  time = 50.5377, size = 172, normalized size = 0.5 \[ c \left (\frac{\operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{2 b^{\frac{3}{2}}} - \frac{x^{2}}{2 \sqrt{a} b \sqrt{1 + \frac{b x^{4}}{a}}}\right ) + e \left (\begin{cases} \frac{a}{b^{2} \sqrt{a + b x^{4}}} + \frac{x^{4}}{2 b \sqrt{a + b x^{4}}} & \text{for}\: b \neq 0 \\\frac{x^{8}}{8 a^{\frac{3}{2}}} & \text{otherwise} \end{cases}\right ) + \frac{d x^{7} \Gamma \left (\frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, \frac{7}{4} \\ \frac{11}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{11}{4}\right )} + \frac{f x^{9} \Gamma \left (\frac{9}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, \frac{9}{4} \\ \frac{13}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{13}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**5*(f*x**3+e*x**2+d*x+c)/(b*x**4+a)**(3/2),x)

[Out]

c*(asinh(sqrt(b)*x**2/sqrt(a))/(2*b**(3/2)) - x**2/(2*sqrt(a)*b*sqrt(1 + b*x**4/
a))) + e*Piecewise((a/(b**2*sqrt(a + b*x**4)) + x**4/(2*b*sqrt(a + b*x**4)), Ne(
b, 0)), (x**8/(8*a**(3/2)), True)) + d*x**7*gamma(7/4)*hyper((3/2, 7/4), (11/4,)
, b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(11/4)) + f*x**9*gamma(9/4)*hyper((
3/2, 9/4), (13/4,), b*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(13/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{{\left (f x^{3} + e x^{2} + d x + c\right )} x^{5}}{{\left (b x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((f*x^3 + e*x^2 + d*x + c)*x^5/(b*x^4 + a)^(3/2),x, algorithm="giac")

[Out]

integrate((f*x^3 + e*x^2 + d*x + c)*x^5/(b*x^4 + a)^(3/2), x)